A combinatorial approach to convex quadratic programming
نویسندگان
چکیده
منابع مشابه
A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملQuadratic bi-level programming problems: a fuzzy goal programming approach
This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...
متن کاملAn approximate dynamic programming approach to convex quadratic knapsack problems
Quadratic knapsack problem (QKP) has a central role in integer and combinatorial optimization, while efficient algorithms to general QKPs are currently very limited. We present an approximate dynamic programming (ADP) approach for solving convex QKPs where variables may take any integer value and all coefficients are real numbers. We approximate the function value using (a) continuous quadratic...
متن کاملFGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کاملLifted Convex Quadratic Programming
Symmetry is the essential element of lifted inference that has recently demonstrated the possibility to perform very efficient inference in highly-connected, but symmetric probabilistic models models. This raises the question, whether this holds for optimisation problems in general. Here we show that for a large class of optimisation methods this is actually the case. More precisely, we introdu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1970
ISSN: 0024-3795
DOI: 10.1016/0024-3795(70)90006-6